DESCRICIÓN DEL MOVIMIENTO A PARTIR DE LA ECUACIÓN VECTORIAL DEL MOVIMIENTO							
	ECUACIÓN GENERAL DE UNA MAGNITUD		VALORES DE LA MAGNITUD EN MOMENTOS DETERMINADOS				
	Permite conocer el valor de la magnitud para <u>cualquier tiempo.</u> El tiempo aparece como variable en la ecuación.		Permite conocer el valor de la magnitud para <u>tiempos concretos</u> . La t de la ecuación general se sustituye por el valor de t que interese. Ejemplo: t=2s				
MAGNITUD	GENERAL	EJEMPLO	VECTOR	COMPONENTES DEL VECTOR	MÓDULO DEL VECTOR	SIGNIFICADO	DIRECCIÓN Y SENTIDO DEL VECTOR
POSICIÓN	$\mathbf{r}(\mathbf{t}) = \mathbf{r}_{x} \mathbf{i} + \mathbf{r}_{y} \mathbf{j}$	r(t) =(2 t+1) i + t ³ j	r(2) =5 i +8 j	rx = 5m; ry = 8m	r (2)= 9,4 m	Las coordenadas del vector nos informan de la posición en el plano en t=2s. Módulo: distancia en línea recta desde la posición a los 2 s hasta el origen del sistema de referencia	
VELOCIDAD INSTANTÁNEA	v(t) = dr/dt	v(t) =2 i + 3t ² j	v(2) =2 i + 12 j	vx = 2 m/s; vy = 12m/s	v (2)= 12,2 m/s	Velocidad del móvil en el instante t=2s	Dirección: Tangente a la trayectoria en el instante considerado. Sentido el del movimiento.
ACELERACIÓN INSTANTÁNEA	a (t)= d v /dt	a(t) = 6t j	a(2) = 12 j	ax = 0 ; ay= 12m/s ²	a(2) = 12 m/s ²	Aceleración del móvil en el instante t=2s	Dirección: Hacia la concavidad de la trayectoria. Se calcula haciendo la suma vectorial de los componentes a _x y a _y .
ACELERACIÓN INSTANTÁNEA.COMPONENTES INTRÍNSECAS	$\mathbf{a}(t) = \mathbf{a}_t \mathbf{\tau} + \mathbf{a}_n \mathbf{n}$		$a(2) = 11.8 \tau + v^2/r n$		a(2) = 12 m/s2	Aceleración del móvil en el instante t=2s. El módulo del vector calculado a partir de las coordenadas intrínsecas es igual al calculado a partir de las coordenadas cartesianas porque el vector aceleración es el mismo, independientemente de cómo lo descompongamos.	Dirección: Hacia la concavidad de la trayectoria. Se calcula haciendo la suma vectorial de los componentes at y an.
	$a_t = d v /dt = d (\sqrt{v_x^2 + v_y^2})/dt$	$a_t = d \sqrt{2^2 + (3t^2)^2} / dt = 36t^3 / 2 \sqrt{2^2 + (3t^2)^2}$		a _t (2) = 11,8 m/s ²		Esta componente de la aceleración nos informa de que , en t=2s el módulo de la velocidad varía 11,8 m/s cada s.	Dirección: Tangente a la trayectoria en el instante considerado.
	a_n es una componente que no depende del tiempo	$a_n = v^2/R = (12,2)2/R$		an (2) = 1,95 m/s ² Ver cálculo según(*)		Esta componente de la aceleración nos informa de cambios en la dirección de la velocidad.	Dirección: Perpendicular a la trayectoria en el instante considerado.
RELACIÓN ENTRE COMPONENTES CARTESIANAS Y COMPONENTES INTRÍNSECAS DE LA ACELERACIÓN (permite calcular a _n aunque no conozcamos R)	a = a _x i +a _y j en coordenadas cartesianas	a = 6t j en coordenadas cartesianas	a(2) = 12 j	ax = 0 ; ay= 12m/s2	a(2) = 12 m/s2	a(2) = 12 m/s2 El vector aceleración es único. Lo que cambia son sólo las componentes, que dependen del sistema de referencia utilizado.	Dirección: Hacia la concavidad de la trayectoria.
	a = a _t τ + a _n n en coordenadas intrínsecas	a=($36t^3/2\sqrt{22+(3t^2)^2}$) $\tau + v^2/R$ n en coordenadas intrínsecas	a(2) = 11,8 τ + 1,95 n	$a_t = 11.8 \text{m/s}^2$; $a_n = 1.95 \text{ m/s}^2 \text{ (ver(*))}$			
	En coordenadas cartesianas: $ a = \sqrt{ax^2 + ay^2}$ En coordenadas intrínsecas: $ a = \sqrt{a_t^2 + a_n^2} \Rightarrow a^2 = at^2 + an^2 \Rightarrow an^2 = a^2 - a_t^2 \Rightarrow an = \sqrt{a^2 - a_t^2}$	$an = \sqrt{a^2 - a_t^2}$ (*)					